If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+40x-224=0
a = 1; b = 40; c = -224;
Δ = b2-4ac
Δ = 402-4·1·(-224)
Δ = 2496
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2496}=\sqrt{64*39}=\sqrt{64}*\sqrt{39}=8\sqrt{39}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(40)-8\sqrt{39}}{2*1}=\frac{-40-8\sqrt{39}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(40)+8\sqrt{39}}{2*1}=\frac{-40+8\sqrt{39}}{2} $
| 8y+12=-4y+5 | | 1/3v=4 | | 5+12s-1=7s+64-5s | | 2(3x+4)-7x=25 | | 7f+24=25 | | -10=-4k+2-4 | | 6x+92=13x-6 | | X^2+x-8^2=40^2 | | X^2+x-8^2=1600 | | 4x-7=-x-11 | | 15x=12+15 | | 4+v-5v=-8 | | 5-(-8)=x-8 | | 3(x+1)=7x+3 | | 3s^2+9s-3=0 | | 2q-5=15 | | 2x-5x+17=x+3-6x-15 | | 4x+9=5(14-x)7 | | 2q-4=5 | | 2q-4=15 | | x=85*((45x+5)/35) | | 0.2=x/50 | | (x-11)(-2)=-20 | | f/2+13=16 | | 3x/3=61/2 | | y+5.8=9.42 | | d/3+4=5 | | (x-11)-2=-20 | | 6m-4=4m+6 | | 2.5x+48=10.5x | | 8+a-20+3a=-12+4a | | x-9.92=6.36 |